A Framework for Iterative Signing of
Graph Data on the Web

Andreas Kasten', Ansgar Scherp?, and Peter SchauB!

! University of Koblenz-Landau, Koblenz, Germany
{andreas.kasten, schauss}@uni-koblenz.de,
2 Kiel University and Leibniz Information Centre for Economics, Kiel, Germany
asc@informatik.uni-kiel.de

Abstract. Existing algorithms for signing graph data typically do not cover the
whole signing process. In addition, they lack distinctive features such as sign-
ing graph data at different levels of granularity, iterative signing of graph data,
and signing multiple graphs. In this paper, we introduce a novel framework for
signing arbitrary graph data provided, e g., as RDF(S), Named Graphs, or OWL.
We conduct an extensive theoretical and empirical analysis of the runtime and
space complexity of different framework configurations. The experiments are
performed on synthetic and real-world graph data of different size and differ-
ent number of blank nodes. We investigate security issues, present a trust model,
and discuss practical considerations for using our signing framework.

1 Introduction

Trusted exchange of graph data on the Semantic Web requires to verify the authenticity
and integrity of the graph data through digital signatures. It ensures that graph data is
actually created by the party who claims to be its creator and modifications on the data
are only carried out by authorized parties [29]. Existing algorithms cover only a specific
part of the whole graph signing process. Tummarello et al. [32] is—to the best of our
knowledge—the only solution addressing the whole signing process. However, it has
severe limitations as its graph signing function can only be applied on simple graphs,
so-called minimum self-contained graphs (MSGs). An MSG is the smallest subgraph
of a complete RDF graph that contains a specific statement d and the statements of
all blank nodes associated directly or indirectly with d. Thus, in the worst case a RDF
graph consists of as many MSGs as the number of statements it contains. As each
statement needs to be signed separately, the approach by Tummarello et al. results in a
high signature overhead in terms of time required to sign the graph as well as statements
needed to represent the MSGs’ signatures.

There is no solution available today that supports signing graphs at different levels
of granularity (e. g., single MSGs, ontology design patterns, and entire graphs). In ad-
dition, there is no support for signing multiple graphs or iteratively signing graphs. The
latter is important as it allows to build chains of signatures for provenance tracking and
building a network of trust on the Semantic Web.

We address these shortcomings by a generic approach for signing graphs such as
RDF(S) graphs, Named Graphs, and OWL graphs. We introduce a framework that di-
vides the process of signing and verifying graph data into different steps as depicted in

Fig. 1. These steps follow the XML standard [2]. First, a canonicalization function is
applied to normalize the data. Thus, given two graphs that differ only in the blank node
identifiers, the canonicalization function ensures that their representation is the same.
This is important for the subsequent serialization function that transforms the canon-
icalized data into a sequential representation before applying a hash function [27] to
compute a cryptographic hash value on the serialized data. Finally, the signature func-
tion combines the graph’s hash value with a signature key [27]. The results of these four
functions constitute the graph signing step. Subsequently, the assembly function creates
a signature graph containing all data for verifying the graph’s integrity and authentic-
ity including the signature value and an identifier of the signature verification key. The
actual verification is conducted in the last step.

Step 0 (Step 1 Step 2 Step 3 Step 4 W Step 5 Step 6
Import Canonicalization Serialization Hash Signature Assembly | | Verification
Graph signing

Fig. 1. The general process of signing and verifying graph data (cf. [2]).

Our approach can be considered a framework, as each of these steps can be imple-
mented in different, independent software components [31]. Due to the formal speci-
fication of the framework’s interfaces, the concrete algorithms used to implement the
components can be arbitrarily combined. This enables a better comparison of different
algorithms and allows to configure the framework such that it is optimized towards ef-
ficiency of the signing process or minimizing the signature overhead. In summary, the
contributions and novel features of our graph signing framework are:

(1) Support for signing graphs on different levels of granularity such as minimum self-
contained graphs (MSGs), set of MSGs, and entire graphs.
(i) Support for signing multiple graphs at once.
(iii) Iterative signing of graph data for provenance tracking.

The need for our signing framework and its novel features is presented along a
concrete use case in the subsequent section. Related work and implementations of con-
crete functions used in the graph signing process are presented in Sections 3 and 4,
respectively. A formal definition of our framework is given in Section 5. Four example
configurations are presented in Section 6 and their performance is empirically evalu-
ated in Section 7. A threat model and security analysis of the example configurations
is presented in Section 8. Finally, we discuss the key management and trust model in
Section 9, before we conclude.

2 Scenario: Trust Network for Web Content

We consider building a trust network for Internet regulation in Germany. The informa-
tion about what kind of content is to be regulated is provided as graph data by different

authorities as shown in Fig. 2. In the trust network, an authority receives signed graph
data from another authority, adds its own graph data, digitally signs the result again and
publishes it on the web. The use of graph data in RDF/OWL is needed in the scenario
in order to effectively process and integrate the information provided by the different
parties.

In the scenario, the German Federal
Criminal Police Office (Bundeskriminalamt,
BKA) provides a blacklist of web sites to
be blocked. For example, until today the ac-
cess to neo-Nazi material on the Internet is
prohibited by German law (Criminal Code,
§86 [8]). According to §86, the BKA digi-
tally signs the blacklist graph along with its
legal background and sends it to Internet ser-
vice providers (ISPs) such as the German
Telecom. By verifying its authenticity and
integrity, the ISPs can trust the BKA’s data.

This data only describes what is to be regu- - @
lated and not how it is regulated. Thus, ISPs

like the German Telecom add concrete de-
tails such as proxy servers used for block- |

ing illegal web sites. The technical details

comprise graph data of different granularity Fig. 2. Trust Network of Web Content
such as ontology design patterns modeling

the regulation meta-information as well as concrete IP addresses of the German Tele-
com’s hardware (see graphs of different granularity (i)). The ISP adds its technical regu-
lation details to the BKA’s original blacklist graph. Subsequently, the German Telecom
signs its own data together with the already signed BKA data to model its provenance
relation (see iterative signing (iii) in the introduction). Customers of the Germany Tele-
com such as the primary school depicted in Fig. 2 are able to verify the authenticity and
integrity of the regulating information. The school has to ensure that its students cannot
access illegal content. The iterative signing of the regulation data allows the school to
check which party is responsible for which parts of the data, i. e., it can track the prove-
nance of the regulation data. Furthermore, the school has to ensure that adult content
cannot be accessed by the students, too. To this end, it receives regulation information
for adult content from private authorities such as ContentWatch. The company offers
regulation data as Named Graphs to protect children from Internet pornography and the
like. Thus, different regulation information from multiple sources is incorporated by the
school and digitally signed, before it is deployed to the school’s computers (see signing
multiple graphs (ii)). This ensures that the students using these computers can access
the Internet only after passing the predefined protection mechanisms.

German Telecom | ContentWatch

anary School

3 Approaches for Signing and Verifying Graphs

First, we discuss different graph signing functions as depicted in Figure 1. Subse-
quently, we discuss existing assembly functions. Verification functions operate simi-

larly to graph signing functions and use the same sub-functions or their inverse. Thus,
they are not discussed in more detail.

Graph Signing Functions Tummarello et al. [32] present a graph signing function
for fragments of RDF graphs. These fragments are so-called minimum self-contained
graphs (MSGs) and are defined over RDF statements. An MSG of a statement d is
the smallest subgraph of the entire RDF graph which contains this statement d and the
statements of all blank nodes associated with it. Consequently, statements without blank
nodes are an MSG on their own. The approach of Tummarello et al. is based on signing
one MSG at a time. Thus, signing a full graph with multiple MSGs requires multiple
signatures which creates a high overhead of signature statements for the whole graph.
The signature of an MSG is stored as six statements, which are linked to the signed
MSG via RDF Statement reification of one of its statements. This RDF reification is
used for identifying the signed MSG. Due to the RDF Statement reification mechanism,
if the original MSG contains blank nodes, the signature statements become part of the
signed MSG as well. Signing this MSG again creates additional signature statements
which also become part of the signed MSG. Thus, signature statements created in the
ith signing iteration are referring to the signed MSG in the same way as the signature
statements created in ¢ + 1st iteration. Thus, it is impossible to distinguish between
different signing iterations.

Signing a graph can also be accomplished by signing a document containing a se-
rialization of the graph [26]. For example, a graph can be serialized using an XML-
based format such as RDF/XML [4] or OWL/XML [17] and signed using the XML
signature standard [2]. If the graph is serialized using a plain text-based format such as
the statement-based serializations N-Triples [3] or N3 [6], also standard text document
signing approaches may be used [27]. However, this means that the created signature
can only be verified with the very single concrete encoding of the graph [26]. For ex-
ample, if the serialized graph data changed the order of its statements (e. g., when being
transferred to a triple store and retrieved back) it may not be possible anymore to verify
the authenticity and integrity of the graph with the signature.

Assembly Function Tummarello et al. [32] present a simple assembly function
which adds statements to the signed MSG containing the signature value and a URL
to the signature verification key used for the signature’s verification. Information about
the graph signing function and its sub-functions is not provided. Once the URL to the
verification key is broken, i. e., the key is not available anymore at this URL, the signa-
ture can no longer be verified. Even if a copy of the verification key is still available at a
different location, the verifier cannot check the true authenticity of the key as the issuer
is only implicitly encoded in the key itself. Finally, the XML signature standard [2] de-
fines a schema for describing details of the assembly function like the canonicalization
function, hash function, and signature function used for computing the signature value.

4 Theoretical Analysis of Graph Signing Sub-functions

As outlined in the introduction, a graph signing function consists of four different sub-
functions, namely the canonicalization function, serialization function, hash function
for graphs, and signing function. We describe different implementations of the sub-

functions and discuss their runtime complexity and space complexity. A formal defini-
tion of all sub-functions is provided in Section 5. Table 1 summarizes the complexity of
different implementations of the four sub-functions. In the table, n refers to the number
of statements to be signed and b corresponds to the number of blank nodes in the graph.

A canonicalization function assures that the in principle arbitrary identifiers of a
graph’s blank nodes do not affect the graph’s signature. Carroll [9] presents a canoni-
calization function for RDF graphs that replaces all blank node identifiers with uniform
place holders, sorts all statements of the graph based on their N-Triples [3] represen-
tation, and renames the blank nodes according to the order of their statements. If this
results in two blank nodes having the same identifier, additional statements are added
for these blank nodes. Carroll’s canonicalization function uses a sorting algorithm with
a runtime complexity of O(nlogn) and a space complexity of O(n) with n being the
number of statements in the graph [9]. Fisteus et al. [12] perform a canonicalization
of blank node identifiers based on the hash values of a graph’s statements. First, all
blank nodes are associated with the same identifier. Second, a statement’s hash value
is computed by multiplying the hash values of its subject, predicate, and object with
corresponding constants and combining all results with XOR modulo a large prime. If
two statements have the same hash value, new identifiers of the blank nodes are com-
puted by combining the hash values of the statements in which they occur. This process
is repeated until there are no collisions left. Colliding hash values are detected by sort-
ing them. Using a sorting algorithm such as merge sort leads to a runtime complexity
of O(nlogn) and a space complexity of O(n). Finally, Sayers and Karp [25] provide
a canonicalization function for RDF graphs, which stores the identifier of each blank
node in an additional statement. If the identifier is changed, the original one can be
recreated using this statement. Since this does not require sorting the statements, the
runtime complexity of the function is O(n). In order to detect already processed blank
nodes, the function maintains a list of additional statements created so far. This list con-
tains at most b entries with b being the total number of additional blank node statements.
Thus, the space complexity of the function is O(b).

Table 1. Complexity of the functions used by the graph signing function o . n is the number of
statements and b is the number of blank nodes in the statements.

Function Example Runtime Space
N Carroll [9], Fisteus et al. [12] O(nlogn) O(n)

Canonicalization Ky

Sayers and Karp [25] O(n) O(b)
Serialization vy N-Triples [3], N3 [6], TriG [7], and others O(n) 0(1)

Melnik [16], Carroll [9] O(nlogn) O(n)
Hash A\ x .

Fisteus et al. [12], Sayers and Karp [25] O(n) 0(1)
Signature € RSA [24], Elliptic Curve DSA [21] o(1) o(1)

A serialization function transforms an RDF graph into a sequential representa-
tion such as a set of bit strings. This representation is encoded in a specific format
such as statement-based N-Triples [3] and N3 [6] or XML-based RDF/XML [4] and

OWL/XML [17]. TriG [7] is a statement-based format built upon N3, which allows for
expressing Named Graphs. When signing RDF graphs, statement-based formats are of-
ten preferred to XML-based notations due to their simpler structure. If a serialization
function processes each statement in the graph individually, it can be implemented with
a runtime complexity of O(n) and a space complexity of O(1). Some canonicalization
functions like [9, 25] also include a serialization function and provide a canonicalized,
serialized graph as output.

Applying a hash function on a graph is often based on computing the hash values
of its statements and combining them into a single value. Computing a statement’s hash
value can be done by hash functions such as SHA-2 [20]. Melnik [16] uses a simple
hash function for RDF graphs. A statement’s hash value is computed by concatenat-
ing the hash value of its subject, predicate, and object and hashing the result. The hash
values of all statements are sorted, concatenated, and hashed again to form the hash
value of the entire RDF graph. Using a sorting algorithm like merge sort, the function’s
runtime complexity is O(nlogn) and its space complexity is O(n). Carroll [9] uses a
graph-hashing function which sorts all statements, concatenates the result, and hashes
the resulting bit string using a simple hash function such as SHA-2 [20]. As the function
uses a sorting algorithm with a runtime complexity of O(n logn) and a space complex-
ity of O(n), the runtime complexity and the space complexity of the function are the
same. Fisteus et al. [12] suggest a hash function for N3 [6] datasets. The statements’
hash values are computed with the canonicalization function of the same authors de-
scribed above. The hash value of a graph is computed by incrementally multiplying the
hash values of its statements modulo a large prime. Since this operation is commutative,
sorting the statements’ hash values is not required. Thus, the runtime complexity of the
hash function is O(n). Due to the incremental multiplication, the space complexity is
O(1). Finally, Sayers and Karp [25] compute a hash value of an RDF graph similar to
the approach of Fisteus et al. First, the statements are serialized as single bit string and
then hashed. Second, the incremental multiplication is conducted. Thus, the runtime
complexity of this approach is O(n) and the space complexity is O(1).

A signature function computes the actual graph signature by combining the graph’s
hash value with a secret key. Existing signature functions are Elliptic Curve DSA [21]
and RSA [24]. Since the graph’s hash value is independent from the number of state-
ments, the signature is as well. Thus, the runtime complexity and the space complexity
of all signature functions are O(1).

5 Formalization of Graph Signing Framework

Based on the related work and existing graph signing sub-functions, we formally define
our graph signing framework. The formalization is required for the analysis of the com-
plexity classes of the different combinations of the sub-functions in the graph signing
process. However, the reader may also directly continue with the different configura-
tions of our graph signing framework in Section 6. By design, our framework supports
signing at different levels of granularity (requirement (i) in the introduction), iterative
signing ((iii) in the introduction), and signing multiple graphs at once (requirement (ii)).
These requirements are fulfilled by different functions of the framework as explained in
more detail in this section.

Definition of Graphs An RDF graph G is a finite set of RDF triples ¢. The set of
all RDF triples is defined as T = (R UB) x P x (R U B U L) with the pairwise
disjoint sets of resources R, blank nodes B, predicates [P, and literals IL. Thus, it is
t = (s,p,0) with s € R U IB being the subject of the triple, p € P being the predicate,
and o € R U B U LL being the object [1]. An OWL graph can be mapped to an RDF
graph [22]. Thus, in the following we will only denote RDF graphs and include OWL
graphs mapped to RDF graphs. The set of all possible RDF graphs is G = 2T. A
Named Graph extends the notion of RDF graphs and associates a unique name in form
of a URI to a single RDF graph [10] or set of RDF graphs. This URI can be described
by further statements, which form the so-called annotation graph. Consequently, the
original RDF graph is also called the content graph. A Named Graph NG € Gy is
defined as NG = (a, A, {C1,Cy,...,Ci}) with a € R U {e} being the name of the
graph, A € G being the annotation graph, and C; € Gy being content graphs with
1 = 1...1. If a Named Graph does not explicitly specify an identifier, € is used as its
name. This corresponds to associating a blank node with the graph. In this case, the
annotation graph A is empty, i.e., A = (. Any RDF graph G € G can be defined
as Named Graph C using the notation above as C' = (g,0, G). The set of all Named
Graphs Gy is defined as G = (RUB) x G x 28%) U {(¢,0, G)} with G € G.

Graph Signing Function Our graph signing function o is built upon the functions
described in the introduction. Input is a secret key &, and a set of m Named Graphs NG|
with NG; = (a;, A;, {C4,,...,C;,}) and i = 1,...,m. The resulting signature s is a
bit string of length d’ € N, i.e. s € {0,1}%". The design of the graph signing function
supports signing of multiple graphs at once (ii). Singing different levels of granularity (i)
is achieved by interpreting all triples to be signed as graph G € G and mapping G to
Named Graph C = (e,0, G). C can then be signed with the graph signing function o .

on Ky x 25V 5 {0,137, on(ks, {NG1,...,NGp}) :=s (1)

on(ks, {NG1,...,NGn}) := e(ks, NN (N (NG1)) - ... - vn (N (NGR))))

The different sub-functions of the graph signing function are defined below: The canon-
icalization function k transforms a graph G € G into its unique canonical form G € G
with G ¢ G being the set of all canonical graphs. If two graphs G1,G2 € G only
differ in their blank node identifiers, it is k(G1) = k(G2).

kG- G, kG) =G)

For Named Graphs, the canonicalization function sy is recursively defined. It com-
putes a canonical representation of a Named Graph NG = (a, A, {C4,...,Ci}) by
computing the canonical representations A and C; of its annotation graph A and its
content graphs C;. The result is a canonical representation NGe @G ~ with G N C Gy
being the set of all canonical Named Graphs.

HN:GN—)GN, I{N(NG) = NG (3)

The serialization function v transforms a graph G € G into a set of bit strings G €
2{0:1}" A single bit string represents a statement in the graph G. The concrete charac-
teristics of the bit strings in GG depend on the used serialization format.

v:G— 2i017 v(G) =G 4

The serialization function v can be extended to the function vy for Named Graphs NG €
G . The result of vy is a set of o bit strings NG € 291} with NG = {b1,b2,...,bo}.
The function is recursively defined as follows:

vy 1 Gy — 2001 uy(NG) = NG (5)
(NG) G if NG = (¢,0,G), G € G
14 = - —
N {(a}UAUT,U...uT, ifNG=(a,A{Cy,....C})

The hash function \ computes a hash value h of arbitrary bit strings b € {0, 1}*.
The resulting hash value h has a fixed length d € N, i.e., h € {0,1}.

A:{0,1} = {0,1}%, A(b):=h (6)

The hash function A\ computes a hash value iy of a serialized Named Graph NG =
{b1,ba,...,b,} and is built upon the function \. The function Ay computes a hash
value of each bit string b; € NG with b = 1,. .., 0 and combines the results into a new
bit string by € {0, 1}% using a combining function . Example combining functions o
are discussed in [25]. The function p is defined as follows:

0:2000" 1013 o({h1, ha, ... ho}) = hy)
Using A and p, the hash function A for Named Graphs is defined as follows:
Av 2007 510,13 AN(NG) == by = 0o({AD1), A(b2), ..., A(bo)}) (8)

A signature function € computes the signature value of a graph based on the graph’s
hash value hy € {0,1}? and a cryptographic key. The keyspace, i.e., the set of all
asymmetric, cryptographic keys is defined as K = K, x K, with IK,, as the set of public
keys and IK as the set of secret keys. For computing signatures, a secret key ks € K is
used. Using s € {0, 1}d/ as identifier for the resulting bit string, the signature function
is defined as follows:

e: Ky x {0,134 = {0,1}%, €(ks,b) :=s 9)

Assembly Function An assembly function ¢y creates the signature graph S € G and
includes it in a Named Graph NGg. The content and structure of S depend on the
implementation of the function ¢y . The graph provides information about how to verify
a graph’s signature. This includes all sub-functions of the graph signing function oy,
the public key k, of the used secret key k,, the identifiers a; of the signed Named
Graphs, and the signature value s. A possible structure of a signature graph is shown
in the examples in [14]. The Named Graph NG g contains the signature graph .S as its

annotation graph and the signed graphs NG, as its content graphs. In order to support
iterative signing of Named Graphs (iii), the result of the assembly function ¢y is also a
Named Graph which can be signed again using the graph signing function o .

onv Ky x 288 5 Gy (10)

cn(ks, {NG1,...,NGm}) := (as, S, {NG1,..., NG })

Verification Function The verification of a signature is similar to its creation. A verifi-
cation function v requires a canonicalization function x y, a serialization function vy,
and a hash function \y. It also requires a signature verification function ¢ as inverse of
the signature function e. The function § requires a bit string s € {0, l}d, and a public
key k, € K, as input. It is defined as follows with b € {0, 1} being the resulting bit
string. It holds d(ky, e(ks, b)) = b with the secret key k.

§: K, x {0,1}% = {0,1}%, 6(k,,s):=b (11)

The verification function vy checks whether or not a given signature is a valid signature
of a set of Named Graphs. The function requires a public key k,, a signature value s, and
set of signed Named Graphs { NG4, ..., NG, }. All values can be taken from the sig-
nature graph S. The function vy combines the signature value s with the public key &,
and computes the hash value k' of the Named Graphs NG;. The signature is valid iff
both computed values are equal. Itis b’ = Ay (vn (kN (NG1))U. . .Uy (KN (NGp))).

v K, x 285 x {0,1}* — {TRUE, FALSE} (12)

TRUE if 6(kp,s) = b/

ky, {NG1,..., NG, },s) :=
Y (kp, { Lyeeos }5) {FALSE otherwise

6 Four Configurations of the Graph Signing Framework

The runtime complexity and space complexity when signing a graph depends on the
characteristics of the graph as well as on the graph signing function o and its sub-
functions. The signature overhead depends on the additional statements created by these
functions and on the size of the signature graph created by the assembly function ¢y .
Table 2 summarizes four possible configurations A, B, C, and D of the signing frame-
work as well as their complexity and signature overhead for signing a single graph. The
example configurations correspond to the related work described in Sections 3 and 4
and are referred to by the names of their authors. Also new configurations can be cre-
ated by combining different algorithms from different authors. To ease comparability,
each configuration uses N-Triples for serialization and RSA as signature function e.
Except for B, the configurations differ only in the canonicalization function xy and
hash function Ay . Configuration B implements the approach by Tummarello et al. and
needs an additional preparation function to split a graph into MSGs. This is required as
otherwise configuration B would not be able to sign entire graphs.

A) Carroll The canonicalization function and hash function of Carroll [9] both
have a runtime complexity of O(nlogn) and a space complexity of O(n) (see detailed

discussion in Section 4). A graph signing function built upon these functions shares the
same complexity. The canonicalization function creates b, additional statements with
br, < b being the number of blank nodes sharing the same identifier (see Section 4).
Thus, the canonicalized graph contains b;, more statements than the original graph. A
signature graph as it is used in [14] consists of 19 statements and results in a signature
overhead of by, 4 19 statements.

B) Tummarello et al. The approach by Tummarello et al. [32] is based on the
canonicalization function and hash function of Carroll [9], i.e., on configuration A.
However, Tummarello et al. only allows for signing individual MSGs. In order to sign
a complete graph, it has to be split into r disjoint MSGs first. Splitting the graph can be
done with a runtime complexity of O(n) and a space complexity of O(n) by using an
implementation based on bucket sort [15] where each MSG corresponds to one bucket.
Each MSG is then signed individually using Carroll’s functions. Signing a complete
graph results in a runtime complexity of O (3";_, n; logn;) and a space complexity of
O (3!_; n;) with n; being the number of statements in MSG :. Since all MSGs are
disjoint, it is) _;_, n; = n. Thus, the total runtime complexity is O(nlogn) and the
space complexity is O(n). The signature of each MSG is stored using six additional
statements. Signing a graph requires r different signatures. The overhead created by
the assembly function of Tummarello et al. is six statements. Thus, the overhead for r
MSGs is 67 statements. Combined with the by, statements from Carroll’s canonicaliza-
tion function results in a total overhead of b;, + 67 statements.

Table 2. Configurations A-D of a signing function oy with runtime complexity, space complex-
ity, and signature overhead. n is the number of statements, b is the number of blank nodes, and
by, is the number of blank nodes which require special treatment.

Configuration Con{plexity of oy | Signature overhead
runtime space | of on and ¢y
A) Carroll [9] O(nlogn) O(n) | by + 19 statements, by, < b
B) Tummarello et al. [32] O(nlogn) O(n) | by + 6r statements, by, < b,r <n
C) Fisteus et al. [12] O(nlogn) O(n) | 0+ 19 statements
D) Sayers and Karp [25] O(n) O(n) | b+ 19 statements

C) Fisteus et al. The approach by Fisteus et al. [12] results in a configuration with
minimum signature overhead. The canonicalization function has a runtime complexity
of O(nlogn) and the hash function has a runtime complexity of O(n). Since these
functions have a space complexity of O(n) and O(1), respectively, the runtime com-
plexity of the signing function oy is O(nlogn) and the space complexity is O(n).
As the functions of Fisteus et al. do not create any additional statements, the signature
overhead is independent of the signed graph and only depends on the signature graph S
Using a signature graph S consisting of 19 statements results in a signature overhead of
19 statements.

D) Sayers and Karp The approach by Sayers and Karp [25] leads to a minimum
runtime complexity of O(n). In order to detect already handled blank nodes, the canon-

icalization function maintains a list of additional statements created so far. This list
contains at most b entries with b being the total number of additional statements. As-
suming that each statement of a graph can contain no, one, or two blank nodes and that
a blank node is part of at least one statement, the graph can contain at most twice as
many blank nodes as statements, i.e., b < 2n. This results in a space complexity of
O(n) of the graph signing function. The signing overhead is b statements added by the
blank node labeling algorithm and 19 statements created by the assembly function.

7 Empirical Evaluation

We evaluate the four example configurations of our graph signing framework and their
sub-functions and compare the experimental findings with our theoretical analysis in
Section 6. In the experiments, we measure the runtime and the space required for
singing a whole graph as well as the number of additional statements created by the
graph signing function and the assembly function. As data sets, we use synthetically
created RDF graphs and real graph data ranging from 10,000 to 250,000 statements. In
order to measure the influence of blank nodes in the graph on the graph signing func-
tion and the assembly function, we generate different percentages of blank nodes for
the graph with 250,000 statements.

The results of our evaluation confirm our theoretical analysis concerning the run-
time and required memory of the algorithms as well as the signature overhead. As de-
scribed in Section 4, some canonicalization functions and hash functions sort the state-
ments in a graph. Our evaluation shows that the sorting operation performed by a hash
function profits from sorting operations that are performed by a preceding canonical-
ization function. This results in less runtime of the hash function. The overall runtime
of configurations A, C, and D is mainly influenced by the runtime of the configurations’
canonicalization functions and hash functions. On the other hand, the main part of the
overall runtime of configuration B is the signature function. This is due the fact that con-
figuration B signs each MSG in the graph separately whereas all other configurations
compute only one signature for the whole graph.

In our evaluation, we used RSA with a key length of 2048 bit as signature func-
tion. This corresponds to a cryptographic security of 112 bit [19]. Using a key length
of 3072 bit, which corresponds to a cryptographic security of 128 bit, takes about three
times longer than using a key length of 2048 bit. This does hardly affect configura-
tions A, C, and D as they only compute a single signature. However, it highly increases
the overall runtime of configuration B that needs to sign each MSG separately. As alter-
native, one could use Elliptic Curve DSA [21] with a key length of 256 bits. It has the
same security as RSA with 3072 bit keys but is about 76 times faster (measured using a
single CPU with 2.53GHz and 4G RAM).

As practical implications from the results of the empirical investigation, we can
suggest that one should use the approach by Sayers and Karp (configuration D) to sign
graph data that contains few blank nodes. The approach by Fisteus et al. (configura-
tion C) might be used for graphs with many blank nodes. If indeed the approach by
Tummarello et al. (configuration B) shall be used, e. g., when no iterative signing is
needed, we suggest applying the faster Elliptic Curve DSA as signature function.

8 Threat Model and Security Analysis

Essential security requirements for signing graph data are to ensure the integrity and
authenticity of the data. Authenticity means that the party who claims to have signed
the data is really the signature’s creator. This requirement is achieved with trust models
which are further described in Section 9. Integrity means that the signed data was not
modified after the signature was created. Achieving this security requirement depends
on the used cryptographic functions that are applied on the RDF graph and its state-
ments. Thus, we can derive the following threat model which covers possible actions of
an attacker:

— Removing existing statements from the signed graph.

— Inserting additional statements into the signed graph.

— Replacing existing statements of the signed graph with different statements. This
also covers modifying statements in the graph.

A comprehensive security analysis of a graph signing function o must cover all
possible algorithms used for its sub-functions. However, only those functions have to
be analyzed which perform cryptographic operations such as the basic hash function A,
hash function Ay for graphs, and signature function e. Functions that do not perform
any cryptographic operations such as sorting functions or serialization functions vy do
not influence the security of the graph signing function. The basic hash function A and
the signature function e are used in any example configuration of our graph signing
framework. Thus, we conduct a security analysis of these functions first, before we
discuss the particular security aspects of the four concrete configurations.

The cryptographic strength of the basic hash function A determines the difficulty of
modifying the signed graph data without being noticed by the verification mechanism.
The more collision-resistant the chosen hash function is, the less likely are unauthorized
modifications on the graph data such as removing statements, adding new statements, or
replacing statements with other statements. A cryptographic strength of 112 bit can be
achieved using SHA-2 [20] with an output length of 224 bits, whereas 128 bit security
requires an output length of at least 256 bit [19]. The signature function e determines the
difficulty for an attacker masquerading as another party. A cryptographically strong sig-
nature function prohibits such attacks. 112 bit security can be achieved using RSA [24]
with a key length of 2048 bits or Elliptic Curve DSA [21] with a key length of 224 bit.
In order to achieve 128 bit security, an RSA key must be at least 3072 bits long and an
Elliptic Curve DSA key must have at least 256 bits [19].

Configuration A uses the canonicalization function of Carroll [9], which does not
perform any cryptographic operations. However, Carroll’s graph hash function sorts all
serialized statements, concatenates them, and computes a hash value of the result using
a basic hash function \. The resulting hash value is directly signed with the signature
function e. Thus, the security of configuration A solely depends on A as well as e. If an
attacker removes a statement from the signed graph, its hash value changes and results
in an invalid signature. Similarly, adding new statements to the graph or replacing state-
ments with other statements changes the graph’s hash value and thus invalidates the
signature as well. Configuration B differs from configuration A only by using an ad-

ditional split function. However, this split function does not require any cryptographic
operations. Thus, the security analysis of configuration B is basically the same.

Regarding configuration C, both the canonicalization function and the hash function
for graphs of Fisteus et al. [12] are computed based on the hash values of the statements
in the graph using a hash function Ag. The function Ag uses a basic hash function A for
computing the hash value of a statement’s subject, predicate, and object and combines
the three results with a prime p. The size of p determines the bit length of the resulting
hash value and thus the security of the hash function. The hash value of an entire graph
is computed by applying the function Ag on all statements in the graph. The results
of single hash operations are combined using MuHASH [5], which is further discussed
below.

Finally, configuration D uses the hash function for graphs by Sayers and Karp,
which computes the hash values of each statement and combines the results using a
combining function like AdHASH or MuHASH [5]. AdHASH adds all hash values to
be combined modulo a large number m. MuHASH multiplies the hash values mod-
ulo a large prime p. In order to ensure 80 bit security, m must be chosen such that
m > 21600 [33]. However, this would reduce the performance of the combining func-
tion. On the other hand, the security of MuHASH is based on the discrete logarithm
problem which is proven to be hard to solve [5]. The size of p generally depends on
the application in which the combining function is used. For signing graph data, one
can choose a prime p with a length of at least 1024 bits as recommended in the litera-
ture [30].

9 Key Management and Trust Model

Digitally signing data is a mechanism for achieving integrity and authenticity of the
data. Implementing these security requirements not only depends on the algorithms
used for creating the signature but also on the organizational management of the used
key material [28] and the trust model that is applied. This section briefly explains the
necessity of key management and trust models as two main aspects in safely using
digital signatures for graphs. Please note that our signing framework is independent
from any particular key management system and trust model and can be used in any
particular implementation.

Key management covers different organizational mechanisms for protecting a key
pair from being compromised and misused by unauthorized parties. It ensures that a
private signature key is only known to and used by its actual owner and that a public
signature verification key can be related to the owner of the key pair. In order to achieve
this, key management covers different tasks which have to be met when digitally signing
graph data. These tasks cover secure creation and storing of keys as well as destroying
old keys and revoking compromised keys [28]. Creating a key pair and storing the
private key in a secure environment such as a dedicated cryptographic hardware module
ensures that only authorized parties can access the private key. Destroying old keys is
necessary to prohibit a usage beyond their intended lifetime. Keys which are too old
may not be secure anymore due to new attacks or greater computational power available
to break the keys. Compromised keys must be revoked to prevent that they are further

used. Finally, the particular implementation of a key management depends also on the
application in which signed graph data is used, e. g., professional environments have
in general higher security requirements than private uses. Detailed guidelines for key
management in professional environments are given, e.g., in [18, 19].

A trust model defines under which conditions a management of a public key is
considered trustworthy. Public key certificates establish such trust by providing some
information about the key owner together with the public key. A public key certificate
is signed by a trusted party known as the certificate authority (CA) [28]. By signing a
public key certificate, a CA states that the public key in the certificate is really owned
by the party described in the certificate. Thus, the trustworthiness of a public key and
its owner depends on the trustworthiness of the CA, which signed the corresponding
certificate. Two widely used models for managing public key certificates are PGP [34]
and X.509 [11]. X.509 follows a strict hierarchical model with a few trusted root CAs,
which are often pre-configured as trust-worthy in most operating systems. An example
application for X.509 certificates is SSL [13]. On the other hand, PGP has no hierarchy
and allows participants to be both end users and CAs at the same time. Applying a
particular trust model depends on the intended application. While X.509 may be used
in professional environments, PGP is mostly sufficient for private use. For an overview
of other trust models and their characteristics, please refer to [23].

10 Conclusion

Our framework allows for signing RDF(S) graphs, OWL graphs, and Named Graphs.
As described in Section 5, the framework provides supports for signing graph data at
different levels of granularity (i), signing multiple graphs at once (ii), as well as itera-
tively signing graph data (iii). We have discussed four different example configurations
of our framework and conducted a detailed theoretical analysis as well as empirical
evaluation on graph data of different size and characteristics.

References

1. M. Arenas, C. Gutierrez, and J. Pérez. Foundations of RDF databases. In Reasoning Web,
pages 158-204. Springer, 2009.

2. M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon. XML signature syntax and pro-
cessing. W3C, 2008. http://www.w3.0rg/TR/xmldsig—-core/.

3. D. Beckett. N-Triples. W3C, 2001. http://www.w3.0rg/2001/sw/RDFCore/
ntriples/.

4. D. Beckett. RDF/XML syntax specification. W3C, 2004. http://www.w3.0rg/TR/
rdf-syntax—-grammar/.

5. M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality at
reduced cost. In EUROCRYPT’97, pages 163—-192. Springer, 1997.

6. T. Berners-Lee and D. Connolly. Notation3 (N3). W3C, 2011. http://www.w3.0rg/
TeamSubmission/n3/.

7. C.Bizer and R. Cyganiak. TriG: RDF Dataset Language. W3C, 2013. http://www.w3.
org/TR/trig/.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.
217.
28.
29.
30.
31.
32.

33.
34.

. Bundesrepublik Deutschland. 886 StGB, 1975. http://www.

gesetze—im-internet.de/stgb/__86.html.

. J. J. Carroll. Signing RDF graphs. In ISWC 2003, pages 369-384. Springer, 2003.
. J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and trust. In

WWW, pages 613-622. ACM, 2005.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and T. Polk. Internet X.509
public key infrastructure. RFC 5280, IETF, 05 2008.

J. A. Fisteus, N. F. Garcia, L. S. Ferndndez, and C. D. Kloos. Hashing and canonicalizing
Notation 3 graphs. JCSS, 76(7):663-685, 2010.

A. O. Freier, P. Karlton, and P. C. Kocher. The secure sockets layer (SSL) protocol version
3.0. RFC 6101, IETF, 2011.

A. Kasten and A. Scherp. Towards a configurable framework for iterative signing of dis-
tributed graph data. In PrivOn, 2013.

D. E. Knuth. Sorting and searching, volume 3 of Art of Computer Programming. Addison-
Wesley, 2 edition, 1998.

. S. Melnik. RDF API draft, 2001. http://infolab.stanford.edu/~melnik/

rdf/.

B. Motik, B. Parsia, and P. F. Patel-Schneider. OWL 2 web ontology language XML serial-
ization. W3C, 2009. http://www.w3.0rg/TR/owl2-xml-serialization/.
NIST. Recommendation for cryptographic key generation. SP 800-133, 2012. http:
//dx.doi.org/10.6028/NIST.SP.800-133.

NIST. Recommendation for key management pt. 1. SP 800-57, 2012. http:
//csrc.nist.gov/publications/nistpubs/800-57/sp800-57_partl_
rev3_general .pdf.

NIST. Secure hash standard. FIPS PUB 180-4, 03 2012. http://csrc.nist.gov/
publications/fips/fipsl180-4/fips-180-4.pdf.

NIST. Digital signature standard (DSS). FIPS PUB 186-4, 06 2013. http://nvlpubs.
nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

P. F. Patel-Schneider and B. Motik. OWL 2 web ontology language mapping to RDF graphs.
W3C, 2012. http://www.w3.0rg/TR/owl2-mapping-to-rdf/.

R. Perlman. An overview of pki trust models. Network, IEEE, 13(6):38—43, 1999.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. CACM, 21(2):120-126, 1978.

C. Sayers and A. H. Karp. Computing the digest of an RDF graph. Technical report, HP
Laboratories, 2004.

C. Sayers and A. H. Karp. RDF graph digest techniques and potential applications. Technical
report, HP Laboratories, 2004.

B. Schneier. Applied Cryptography, chapter Protocol Building Blocks. Wiley, 1996.

B. Schneier. Applied Cryptography, chapter Key Management. Wiley, 1996.

B. Schneier. Secrets and Lies, chapter Security Needs. Wiley, 2004.

P. T. Stanton, B. McKeown, R. Burns, and G. Ateniese. FastAD: An authenticated directory
for billions of objects. ACM SIGOPS, 44(1):45-49, 2010.

C. Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley, 2002.

G. Tummarello, C. Morbidoni, P. Puliti, and F. Piazza. Signing individual fragments of an
RDF graph. In WWW, pages 1020-1021. ACM, 2005.

D. Wagner. A generalized birthday problem. In CRYPTO 2002. Springer, 2002.

P.R. Zimmermann. The official PGP user’s guide. MIT press, 1995.

