Declarative Representation of Programming
Access to Ontologies

Stefan Scheglmann, Ansgar Scherp, and Steffen Staab
{schegi, scherp, staab}@uni-koblenz.de

Institute for Web Science and Technologies
University of Koblenz-Landau, Germany

Abstract. Using ontologies in software applications is a challenging task
due to the chasm between the logics-based world of ontologies and the
object-oriented world of software applications. The logics-based repre-
sentation emphasizes the meaning of concepts and properties, i.e., their
semantics. The modeler in the object-oriented paradigm also takes into
account the pragmatics, i.e., how the classes are used, by whom, and why.
To enable a comprehensive use of logics-based representations in object-
oriented software systems, a seamless integration of the two paradigms is
needed. However, the pragmatic issues of using logic-based knowledge in
object-oriented software applications has yet not been considered suffi-
ciently. Rather, the pragmatic issues that arise in using an ontology, e.g.,
which classes to instantiate in which order, remains a task to be care-
fully considered by the application developer. In this paper, we present a
declarative representation for designing and applying programming ac-
cess to ontologies. Based on this declarative representation, we have build
OntoMDE, a model-driven engineering toolkit that we have applied to
several example ontologies with different Characteristics.

1 Introduction

One of the most challenging issues in implementing Semantic Web applications is
that they are built using two different technologies: object-oriented programming
for the application logic and ontologies for the knowledge representation. Object-
oriented programming provides for maintainability, reuseability and robustness
in the implementation of complex software systems. Ontologies provide power-
ful means for knowledge representation and reasoning and are useful for various
application domains. For accessing ontological knowledge from object-oriented
software systems, there are solutions like ActiveRDF [8] and Jastor!. Most of
these frameworks make use of the structural similarities of both paradigms,
e.g., similar inheritance mechanisms and utilize simple solutions known from the
field of object-relational mapping. But with the use of these existing tools some
problems cannot be solved: Typically, the structural similarities lead to a one-to-
one mapping between ontology concepts, properties and individuals and object-
oriented classes, fields and objects, respectively. This leads to a data-centric

! nttp://jastor.sourceforge.net/ last visit June 24, 2011

object-oriented representation of the ontology which ignores the responsibility-
driven [17] nature of object-orientation. It is up to the API developer to provide
additional object-oriented layers which allow the use of the generated class rep-
resentations. In addition, not all concepts and relations that must be defined in
the ontology are useful in the object-oriented model. Again it is up to the API
developer to provide proper encapsulations to hide such concepts from the appli-
cation developer. Since this additional programming effort of the API developer
relies on the one-to-one class representations of a specific ontology, changes in the
ontology easily end up in excessive adaptation work of the API. In addition, as
the experiences in the WeKnowlt-project show, new requirements and changes
in the ontology may imply tedious and complex updates of the programming
access to the logics-based representation. What is needed is a tool that compre-
hensively supports API developers in designing pragmatic programming access
to ontological knowledge.

In this paper, we present a declarative representation for pragmatic access
to ontological structures that supports the developer in building programmatic
access to ontologies. We present OntoMDE, a Model-Driven Engineering toolkit
for the generation of programming access to ontologies that is based on these
declarative representations. OntoMDE supports the developer in building APIs
adapted to concrete application needs. We define our problem and introduce a
scenario and running example in the following section. In Section 3, we define
the requirements for developing programming access to ontologies. Based on
these requirements, we introduce our approach in Section 4. We have applied
our approach at the examples of selected ontologies presented in Section 5. In
Section 7, we discuss the related work, before we conclude the paper.

2 Scenario, Example and Problem

First, we present a scenario to motivate our work. Subsequently, an example
ontology is introduced to demonstrate the problems of today’s API generation
tools conducting a one-to-one mapping. We compare the API resulting from the
use of existing tools with an API that would be more natural to have in a purely
object-oriented model.

2.1 Scenario: An Ontological Multimedia Annotation Framework

Jim works for a multimedia company and is responsible for the integration of
knowledge-base access in an object-oriented media annotation framework. The
media annotation framework should support the user in annotating multimedia
content such as images or video clips. Jim shall use an ontology for representing
annotated media as well as the multimedia annotations. He has not been involved
in the design of the ontologies. His task is to define the programming interfaces
to access and update the knowledge-base seamlessly from the application. He
has to consider that further specializations toward domain-specific annotations
could result in changes of the implementation.

2.2 Example: Ontology-based Modeling of Multimedia Metadata

Figure 1(a) shows an excerpt of the ontology used by Jim to model the multi-
media metadata. The example is based on the Multimedia Metadata Ontology
(M30) [13] for representing annotation, decomposition, and provenance infor-
mation of multimedia data. It models the annotations of an image with an
EXIF? geo-point wgs84:Point? and a FoaF* person foaf:Person as image creator.
As we can see from the different namespaces, the m3o:Image, wgs84:Point and
foaf:Person concepts and their superconcepts dul:InformationEntity, dul:Object
and finally dul:Entity are defined in different ontologies. The inheritance and
import relationships are shown in Figure 10, which is needed important for a
proper API representation.

a

| m3o:AnnotationConcept |

" |du|:deﬁn6 4
| m3o:AnnotationPattern [\I/ \I/
| m3o:AnnotatedConcept | | m30:GeoPointConcept }—\—‘ m3o0:CreatorConcept

I m3oimage | I WwgsB4:Point |] | foaf:Person I

dul:hasSetti
| m3o:AnnotationSituation ||< - 09

Soushes:inp
SysRP:Np
SusRPINp
SUsRP:INp

b geo:lat geo:Long’

| mBoimage |—|>| dul:InformmationEntity l—[>| dul:Entity |<]—| dul-Object |<]—

Fig. 1. Annotation of an Image with its Geo-location and Creator

2.3 Issues with APIs provided by Existing Frameworks

Jim uses a simple ontology API generation framework with a one-to-one mapping
like those mentioned in the introduction to generate a programming access to the
ontology. Figure 2 shows the generation result for the ontology excerpt presented
above using such an existing tool. The framework creates a class representation

2 http://wuw.exif.org/ last visit dec 05, 2011

3 Basic Geo (WGS84 lat/long) Vocabulary http://www.w3.org/2003/01/geo/ pro-
vides the namespace, last visit dec 05, June 2011

4 http://www.foaf-project.org/ last visit dec 05, 2011

AnnotationPattemn

\/ id : IndividualURI

l-conceptld : ConceptURI

1

ImageConcept defines : Concept EXIFGeoPointConcept FoaFPersonConcept
—idl: IndividualURI 1 -id : IndividualURI -id : IndividualURI
l-conceptld : ConceptURI 1 : ConceptURI -conceptld : ConceptURI
-classifies : Image 1 -classifies : EXIFGeoPoint -classifies : FoaFPerson
1 ; / 1; / 1; /
Image EXIFGeoPoint FoaFPerson
Hid : IndividualURI -id : IndividualURI Fid : IndividualURI
1 [-conceptid : ConceptURI = -latitude : Coordinate -name : string
. y longitude : Coordi . |age : uint
-iq : IndividualURI 8 ionSituati ing :
neeptid ConceptURI +getLatitude() : Coordinate +getName() : string
1 : +getLongitude() : Coordinate +getAge() : uint

/|\1

Fig. 2. Naive ontology API implementation generated by existing tools

for each of the concepts defined in the ontology. The relationships between con-
cepts are represented as fields of the domain classes, e.g., the satisfies relationship
between the m3o:AnnotationSituation and the m3o:AnnotationPattern concept is
represented as satisfies field of type AnnotationPattern in the AnnotationSitua-
tion class. The generated class structure gives Jim no information about how
to use it, i.e., which classes to instantiate when annotating an image with a
geo-point or a creator. In fact one has to instantiate the class representations
AnnotationPattern, AnnotationSituation, Image, EXIFGeoPoint, ImageConcept and
EXIFGeoPointConcept and fill all the fields representing the relationships, namely
defines, classifies, hasSetting and satisfies.

Furthermore not all class representations are of direct concern for Jim’s appli-
cation. Some of these representations provide direct content for the application,
like the annotated entity — the Image — or the annotation entities — the EXIF-
GeoPoint and the FoaFPerson. Other classes only provide the structure necessary
for a proper knowledge representation. The M3O ontology uses the Description
& Situation (D&S) ontology design pattern. Description & Situation is another
reification [3] formalism in contrast to the RDF reification®. For using D&S as
reification formalism one has to add additional resources, the description, situ-
ation and the classifying concepts. The class representation for these concepts
are of no use for Jim when using the API in his application. For this reason, he
decides to encapsulate them from direct access and hide them from an eventual
application developer.

2.4 Solution: Reference API for the Example Ontology

Due to the problems arising with the use of simple one-to-one mappings, Jim
decides to build a programming interface to the ontology without the use of
an API generation framework. Please note that the subsequently described API
results from the design decisions made by Jim and represents only one possi-
ble model of an API for accessing this ontology. The API model designed by

® http://www.w3.org/TR/rdf-mt/#ReifAndCont last visit dec 10, 2011

Jim is presented in Figure 3. In addition we show in Figure 4 two further pos-
sible models. All these API models are used in our evaluation in Section 5.
Jim first identifies the functionality to be provided by the API, the annota-
tion of images. Jim decides to provide a class for this, the annotation class.
API-1: He defines the set of concepts and properties involved in this function-
ality. Jim classifies the concepts in this set according to how they are used in
the application and he splits them into two disjoint sets. The first set contains
all concepts representing the content the application works on. In our termi-
nology, we call them content concepts. We would like to emphasize that in
our scenario Jim as an API developer will not have to know about the ter-
minology we use at all; but it is significantly easier in this paper to use our
terminology to explain the different decisions he may take when developing
the API. For our example Jim chooses the m3o:Image, the wgs84:Point and the
foaf:Person to provide the content. The other set contains the concepts of struc-
tural concern for the knowledge representation. Subsequently, we call these con-
cepts structure concepts. For Jim these concepts are m3o:AnnotationPattern,
m3o:AnnotationSituation, m3o:AnnotatedConcept, m30:GeoPointConcept, and m3o:CreatorConcept
and he wants his API to encapsulate and hide class representations of such con-
cepts from the application. In our terminology, we call a set of concepts and
relations related to an API class a semantic unit SU = (CO, SO, R) with CO
the set of content concepts, SO the structure concepts and R the set of re-
lations. For our example, semantic units are, e.g., the annotation as described
above or the geopoint consisting of the wgs84:Point together with its latitude
and longitude. Jim wants his API to be prepared for arbitrary multimedia con-
tent and new types of annotations. The ontology provides abstract concepts
for multimedia content and annotations in its inheritance structure presented
in Figureld. But not all concepts from this structure are of interest. Thus Jim
decides to use only the least common subsumers, e.g., dul:InfomationObject for
annotatable multimedia content and dul:Object for annotations. Jim implements
interfaces representing these two concepts.

Jim is now able to design the API. He defines a class for the annotation
functionality, as shown in Figure 3. In addition, he defines a class for each con-
tent concept the application works on, in this case Image, EXIFGeoPoint
and FoaFPerson. These classes implement the interfaces derived from the on-
tologies inheritance structure, InformationEntity and Object. The Informa-
tionEntity interface has to be realized by annotable multimedia content, e.g.,
by the Image and the Object interface has to be realized by annotation en-
tities, e.g., EXIFGeoPoint and FoaFPerson. All these classes and interfaces
together with the operations form a so-called pragmatic unit. A pragmatic
unit is a tuple PU = (C, F, M) that contains the classes C, the fields F' and the
methods M of an object-oriented model and that relates to a specific semantic
unit in the underlying knowledge model.

API-2: Another possible model is API 2 shown in Figure 4 , which is a
more light weight API for an image-viewer. An API only consisting of three main
classes, a representation for the m3o:Image, the wgs84:Point and the foaf:Person.

AnnotationPragmaticUnit

=== +AnnotatedI|Entity : InformationEntitylmpl
—4-AnnotationEntity : Entitylmpl
+Annotation() : AnnotationPragmaticUnit
+addAnnotation()

+getAnnotations() : Object
+removeAnnotation()

«interface»
InformationEntity

+getlD() : IndividualURI
+getConceptlD() : ConceptURI

Image

-id : IndividualURI
-conceptld : ConceptURI

«interface»
Object

+getID() : IndividualURI
+getConceptlD() : ConceptURI

[

EXIFGeoPoint FoaFPerson
-id : IndividualURI -id : IndividualURI
-latitude : Coordinate -Name : string
-longitude : Coordinate -Age : int

+getLatitude() : Coordinate
+getLongitude() : Coordinate

+getName() : string

+getAge() : int

Fig. 3. API for the Running Example developed by Jim

The annotation semantic unit class representation is integrated within the
m3o:lmage content concept class representation.

API-3: The decisions behind API 3, shown in Figure 4 are basically the
same as for API 1 with the difference that the annotation semantic unit class
representation should be identifiable by an URI. For this purpose the annotation
semantic unit class representation is integrated with the AnnotationSituation
class representation. In this API model the AnnotationSituation provides content
— what we call content concept — and encapsulates the annotation semantic
unit.

]
APl 2 1API 3
]
1 AnnotationSituation
Image (-1 d TnaNidualRT
-id : IndividualURI 1 H |-1-conceptld : ConceptURI
-conceptid : ConceptURI 1 | H ity : i
1= == - {+GeoAnnotation: EXIFGeoPoint 1 i I |-AnnotationEntity : Entitylmpl
|~ 1{:Creator ; FoafPerson H | [FAnnotation() : AnnotationPragmaticUnit
I 1 [|+image():image 1 ! | |+addAnnotation()
! I [+addGeoAnnotation(EXIFGeoPoin) 1 || [rgetAnnotations() : Object
I 1 |+getGeoAnnotation() : EXIFGeoPoint - [+removeAnnotation()
| | [+removeGeoAnnotation() 1 ittt)
|| [+addCreatorAnnotation(FoafPerson) 1 «interface» «interface»
I 1 |+getCreatorAnnotation : FoafPerson Object
I | |[#removeCreatorAnnotation() | [getiD(: IndividualUR] [getiD() : IndividualURI
VT ____________.. 1 |HgetConceptiD() : ConceptURI | +getConceptiD() : ConceptURI
[—— N i
i H ! : |
EXIFGeoPoint FoaFPerson 1 EXIFGeoPoint FoaFPerson
[id : IndividualURT id : IndividualURI 1 C id : IndividualURI id : IndividualURI
Hatitude : Coordinate -Name : string age latitude : Coordinate -Name : string
|-longitude : Coordinate -Age : int 1 Hid : IndividualURI flongitude : Coordinate -Age : int
[*getLatitude() : Coordinate getName() : string 1 [conceptid : ConceptURI [getLatitude() : Coordinate getName() : string
[+getLongitude() : Coordinate +getAge() : int 1 [tgetLongitude() : Coordinate +getAge() : int
.

Fig. 4. Alternative APIs for the Running Example Ontology

3 Requirements for Programming Access to Ontologies

In this section, we analyze the requirements for the generation of programming
access to ontologies. The requirements have been derived from real world im-
plementation efforts made for different projects in our workgroup, e.g., the EU
project WeKnowItS.

We use the scenario in Section 2 and the implementation of the reference API
described in Section 2.4 to motivate the requirements. The requirements are dis-
tinguished into two sets of requirements: (1) requirements directly related to the
programming access in Section 3.1, typically in form of an API; (2) requirements
related to a process that generates such an API in Section 3.2.

3.1 Requirements on the Pragmatic Programming Access

(R1) Concept Representations Programming access to ontologies has to
represent the ontology concepts as classes in the object-oriented software sys-
tem similar to Data Access Objects” (DAOs), ActiveRecords or Data Mapper
(both [1]) in the world of relational databases. Frameworks like those presented
in the related work usually map each ontology concept to an object-oriented
class representation and map the concept’s properties to fields of this class. For
our example, such a mapping is shown in Figure 2.

(R2) Encapsulation Not all concepts of the ontology are of concern for an
application developer. In Section 2.4, Jim identifies several concepts providing
the content his application works on, the content concepts. The rest of the
concepts are classified as structure concepts. These structure concepts are
only of concern for the proper knowledge representation. A programming access
should provide for encapsulation of concepts not interesting for an application
developer.

(R3) Mapping of Inheritance Structures There are differences between
the inheritance structure of an API and of an ontology. In object-orientation a
class can inherit both data (attributes) and behavior (methods) from an ancestor
class. Furthermore some object-oriented languages does not support multiple in-
heritance, e.g. Java. But we need an inheritance structure for our ontology access
API, thus for generating programming access to ontologies, we need information
how to generate a lean and useful inheritance structure from the ontology for
the API.

(R4) Pragmatic Units APIs provide a programming interface for their
responsibility, e.g., the annotation of images like the API from our example in
Section 2.3. Such a programming interface supports methods to perform com-
mon task. For our example this would be adding, removing or manipulating
annotations and images. Performing such operations in programming access to
ontologies often results in the manipulation of multiple ontology entities and

S http://www.weknowit.eu/ last visit dec 5, 2011
" DAOs as Core J2EE Pattern http://java.sun.com/blueprints/
corej2eepatterns/Patterns/DataAccessObject.html

thus multiple concept-class representations. Our API should provide classes to
support the application developer in performing these operations in an easy and
well encapsulated way.

(R5) Method Behavior APIs provide methods to access or manipulate
APIT entities or to query for entity properties. It might be necessary to leave the
Java representation and fall back to reasoning on the ontology [10] to be able
to answer queries. For example querying for all instances of a specific concept
could be such a question. A method for such a query performed on the Java
representation could guarantee soundness but never completeness. The same
also applies for consistency preservation. In some cases, the API could restrict
its behavior in a way that it ensures the consistency of the represented knowledge.
We expect the API to either inform or throw an exception that the requested
action would affect the consistency of the represented knowledge. Sometimes, it
is not possible or practical for complexity reasons to restrict the API behavior,
in this case the API cannot ensure the consistency. Currently, we focus on cases
where restrictions or query answering on the API are possible, e.g., qualified
number restrictions on properties. A reasoner integration to ensure validity of
operations remains for future work.

3.2 Requirements on the Process for Generating Programming
Access to Ontologies

(R6) Customizing generated APIs There is not a single correct output of the
generation process. The output is strongly driven by the developer and the con-
text of the target application. For instance, in Section 2.4 we have demonstrated
how 3 different APIs might have been defined for a given ontology, reflecting dif-
ferent needs of the target applications. The generation process has to support the
developer in controlling and customizing the output. From our observation, we
know that concept classification and assignment to semantic units is mostly
uniform for various application scenarios but choice of pragmatic units and
their arrangement can vary strongly from case to case. The import of ontologies
and the intended inheritance structure in the API can also vary for different
application scenarios.

(R7) Legacy APIs integration The user should be able to integrate legacy
APIs. Let us assume Jim uses the image class of the AWT API®. To use this
image class, Jim has to integrate it with the ontology API and provide ontology
access functionalities for this class.

(R8) Import The generation process has to deal with import instructions
in the ontologies. A generation process has to manage all imports and decide
which are important for the API generation process.

(R9) De-Anonymization of Concepts Ontologies allow for anonymous
concepts in complex class expressions in OWL or blank nodes in RDFS. How-
ever, there are no anonymous classes in object orientation. For this reason, we

8 http://download.oracle.com/javase/1.4.2/docs/api/java/awt/Image . html

only allow named concepts in ontologies and need to de-anonymize anonymous
concepts first, if necessary.

4 Programming Access to Ontologies

In order to alleviate application developers from building the pragmatics of ac-
cessing Semantic Web knowledge in object-oriented applications, we present On-
toMDE a Model-driven Engineering (MDE) approach for the generation of pro-
gramming access APIs from an input ontology. The OntoMDE framework guides
the developer through the semi-automatic generation process. Figure 5 depicts
the whole process with its two intermediate models, the MoOn and the OAM.
OntoMDE provides tools to support the user in adding declarative information
about the pragmatic programming access to the intermediate models.

Input§ OntoMDE :Output

OWL MoOn 9 OAM e

Java

Fig. 5. The API Generation Process

In the first step, the Model of Ontologies (MoOn) is used to represent cru-
cial properties of the target API as properties of the ontology in a declarative
manner. In MoOn, concepts are classified as either being content concepts or
structure concepts. Semantic units are defined and one can adapt parts of
the ontology’s inheritance structure to the API. Figure 6 shows the annotation
semantic unit from our running example in the MoOn-based representation.

In the second step, the MoOn-based representation is transformed to the
Ontology API Model (OAM). The OAM provides a declarative representation
of API properties that cannot be tied to the structure of the ontology, like
legacy API integration or method behavior customization. In addition the OAM
enables to embed information relevant for the code generation process, e.g., to
tailor the concrete API to a particular repository backend. Figure 3 shows the
OAM for our running example. Finally, the code is generated from the OAM in
fully automated manner.

In the following sections, we describe the different transformation steps along
the example from Section 2 in more detail and associate the design decision with
the requirements from the previous section.

AnnotationSemanticUnit
<<structure>>
m3o:AnnotationConcept
<<structure>>
m3o:AnnotationPattern | dul:defines
<<structure>> <<structure>> <<structure>>
m3o:AnnotatedConcept m30:GeoPointConcept m3o:CreatorConcept
g o 2 a
g g g <
g i i i
= =+ =
R & ®
<<content>> <<content>> <<content>>
m3o:Image wgs84:Point Foaf:Person
L |
<<structure>> ed Jl:hasSetting %7
m3o:AnnotationSituation
<<content>> <<content>>
dul:InformationEntity dul:Object

Fig. 6. The Annotation Semantic Unit in the MoOn

4.1 Step 1: From Ontology T-Box to MoOn

MoOn is based on an adaptation of the ECore Metamodel for OWL2°. The
transformation of OWL-based ontology entities into a MoOn representations is
inspired by the OWL-to-UML mappings described in [6, 4, 11], see the discussion
on mapping models in the related work Section 7. A MoOn model for an ontology
results from two different steps, first a fully automatic transformation of the
ontology in an ECore model. Second from a manual extension of this ECore
model with declarative information about the pragmatic programming access.

Transformation OWL to MoOn: First, we have to represent the ontology
in the MoOn. This preparation of the MoOn includes the representation of all
relevant concepts, see(R1). For this reason, ontologies distributed over multiple
files are accumulated, imports in the ontology are resolved, see (R8) and implicit
knowledge of the ontology is materialized using reasoning. After these steps, we
substitute anonymous concepts by named concepts (R9). In Description Logics
based languages as OWL this is easily possible by just naming all anonymous
classes. In a last step, we care about the parts of the inheritance structure that
are carried over to MoOn-based ontology representation, compare Figure 1 and
Figure 6. To adapt the inheritance structure in MoOn-based ontology represen-
tations to our needs, the proper concepts from the inheritance structure are
selected, e.g., by choosing the least common super-concept (R3).

Adding Declarative Information to the MoOn: The next step is to
add responsibility-driven information, i.e. information about how to use ontol-
ogy concepts in context of the applications. The user defines semantic units

9 MOF-Based Metamodel for OWL2
http://www.w3.0rg/2007/0WL/wiki/MOF-Based_Metamodel

and allocate concepts to them, see (R4). For our example, Jim represents an-
notation as semantic unit and allocates all concepts shown in Figure 6 to
it. Additionally, the concepts have to be classified into structure concept or
content concepts (R2). For Jim m3o:lmage, wgs84:Point and foaf:Person are
the content concepts and m3o:AnnotationPattern, m3o:Annotation-Description,
m3o:AnnotatedConcept and m3o:GeoPointConcept are the structure concepts.

OntoMDE provides for user support in concept assignment and classification
tasks. Based on an existing semantic unit allocation, OntoMDE suggests for
concept classification and based on concept classifications OntoMDE can give
advices for semantic unit allocation.

4.2 Step 2: From MoOn to OAM

The OAM uses the syntax of UML2 with profiles in order to represent the target
API. The primary purpose of the OAM is to provide declarative representations
of additional information used during code generation. For example, informa-
tion to integrate a particular repository backend (R6) or information about the
integration of legacy API classes (R7). Very important is information about the
characteristics of properties such as symmetry or transitivity. This is used to
support dedicated method behavior (R5) in the ontology API. As a foundation
for the OAM an API representation is generated fully automatically from the
MoOn-based ontology representation. In this transformation class representa-
tions for content concepts, semantic units and interfaces for the inheritance
structure are generated, similar to what Jim did in Section 2.4, (R1,R3,R4).
Table 1 summarizes the mappings between MoOn entities and the API enities.

MoOn based ontology representa-Ontology API Model (OAM)

tion

Content concepts Content classes & class fields

Content individuals Content objects

Structure concepts Class attributes

Structure individual Individual URI and concept URI

Semantic unit Pragmatic unit class

Concept properties & relations Encapsulated in Pragmatic unit classes or class
fields

Property characteristics declarative extension in OAM

Table 1. Overview of Mappings between MoOn and OAM

Step 3: Generating the code of an API from the OAM

In the last step, we generate code from the API representation in the OAM.
This fully automated process is supported by the OntoMDE toolkit using Java

9 http://www.omg.org/technology/documents/profile_catalog.htm

Emitter Templates!? (JET) as code generation framework.

5 Design of Case Studies

The primary objective of our case studies is to demonstrate the applicability of
our approach. In addition, we want to show the flexibility and adaptability of
the approach.

To show the applicability of our approach, we used the OntoMDE toolkit
to generate APIs from different ontologies. We have selected ontologies with
different characteristics in terms of complexity, level of abstraction, degree of
formalization, provenance, and domain-specificity. We used OntoMDE to gen-
erate APIs for the artificial ontologies Pizza!! and Wine'?. As less formal real
world ontologies, we have choose the Ontology for Media Resources (OfMR)!3 of
the W3C and the CURIO' ontology used in the from the WeKnowlIt project!®.
And last, we used OntoMDE to generate APIs for the M3O [13], our running
example is based on, and the Event-Model-F (EMF) [14].

To demonstrate the flexibility and adaptability, we used OntoMDE to gener-
ate different APIs from the same input ontology, from slightly changed version
of the same ontology and to integrate legacy APIs into our ontology access API.
We selected the M30 ontology and an OfMR aligned version of the M30 and an
EXIF16-aligned version of the M3O as input ontology for this study. As outlined
for our example in Section 2.4, we designed different possible APIs for accessing
the M30. Then, we generated these APIs from the M3O ontology by changing
the declarative information about programming access on the MoOn and the
OAM. To show the integration capabilities of OntoMDE, we use the OAM to
integrate legacy APIs for the Image class in the M30O API.

6 Lessons learned

With the first use case, the generation of APIs for Pizza and Wine ontologies, we
have shown that our approach is capable of processing OWL ontologies, (R1,R9).
From applying OntoMDE to multiple ontologies with different characteristics,
we can conclude that the general idea of distinguishing concepts into content
concepts or structure concepts is applicable to all tested ontologies. The
concrete sets of content concepts or structure concepts strongly depends on

10 http://www.eclipse.org/modeling/m2t/?project=jet#jet last visit dec 5, 2011

' The pizza ontology http://www.co-ode.org/ontologies/pizza/2007/02/12/ last
visit dec 5, 2011

2 http://www.w3.org/TR/owl-guide/wine.rdf last visit dec 5, 2011

3 http://www.w3.org/TR/mediaont-10/ last visit dec 5, 2011

' nttp://www.weknowit.eu/content/curio_collaborative_user_resource_
interaction_ontology last visit dec 5, 2011

15 http://www.weknowit.eu/ last visit dec 5, 2011

'8 http://wuw.exif .org/specifications.html last visit dec 5, 2011

the characteristics of the ontology. In simple, less formal ontologies most of the
concepts are content concepts of direct concern for the application, providing
content. Whereas, in complex ontologies with a high level of abstraction and
intense use of reification more of the concepts tend to be structure concepts.
The organization of concepts in semantic units is also applicable to all kinds
of ontologies. Again, we encounter differences depending on the characteristics
of the ontology. Simple ontologies often only allow for few and usually small
semantic units. Complex ontologies allow for multiple partially overlapping
semantic units with potentially many concepts.

We have also investigated the flexibility and adaptability of our approach. Re-
garding the adaptability, we have integrated the java.awt.image package as legacy
APIs for representing images into the APIs of our example. Using the OAM, the
integration of the generated API and the legacy API could be conducted in
a few steps. As mentioned, we have generated different APIs for the ontology
from our example. We have also shown that changes of the API model could
be accomplished by modifications on the MoOn, such as ”choice of pragmatic
units” or ”choice of content concepts”. As you can see, these changes result in
different numbers of pragmatic units and generated concept classes. To demon-
strate the flexibility regarding the actual RDF-persistence layer used, we have
changed the back-end API of the OntoMDE approach. For the evaluation, we
used our own RDF-persistence layer Winter[12] as well as the RDF-persistence
layer Alibabal”. This change of the backend could be conducted within a short
time of about one hour. This covers requirements (R5), (R6), and (R7).

7 Related Work

The problem space of object relational impedance mismatch and the set of con-
ceptual and technical difficulties is addressed frequently in literature, e.g. in
[5, 15, 16, 2]. Among others, Fowler provides in his book [1]*® a wide collection
of patterns to common object relational mapping problems. Due to the fact that
many problems in persistence and code generation for ontologies are similar to
problems from the field of relational databases many approaches utilize object-
relational strategies for object-triple problems, for example like ActiveRDF 8],
a persistence API for RDF adapting the object-relational ActiveRecord pattern
from Fowlers book or OTM;j'® a framework that resembles some of Fowlers pat-
terns to the field of object-triple mapping. Most of the other frameworks, like Al-
iBaba, OWL2Java [6], Jastor??, OntologyBeanGenerator?!, Agogo [9], and oth-
ers, use similar techniques adapting object-relational solutions. An overview can

" http://www.openrdf .org/doc/alibaba/2.0-alpha4/ last visit dec 5, 2011

'8 http://martinfowler.com/eaaCatalog/activeRecord.html last visit dec 5, 2011

!9 https://projects.quasthoffs.de/otm—j last visit dec 5, 2011

20 http://jastor.sourceforge.net/ last visit dec 5, 2011

! http://protege.cim3.net/cgi-bin/wiki.pl?0OntologyBeanGenerator last visit
dec 5, 2011

be found at Tripresso??, a project web site on mapping RDF to the object-
oriented world. All of these frameworks use a simple mapping model for trans-
forming each concept of the ontology into a class representation in a specific
programming language like Java or Ruby. Properties are mapped to fields. Only
Agogo [9] is a programming-language independent model driven approach for au-
tomatically generating ontology APIs. It introduces an intermediate step based
on a Domain Specific Language (DSL). This DSL captures domain concepts
necessary to map ontologies to object-oriented representations but it does not
captures the pragmatics.

The mappings used to generate the MoOn from the OWL ontologies are based
on the work done for the Ontology Definition Metamodel (ODM) [4, 11]. The
Ontology Definition Metamodel [7] is an initiative of the OMG?? for defining an
ontology development platform on top of MDA technologies like UML.

8 Conclusion

We have presented a declarative representation of properties of ontologies and
their entities with regard to their use in applications and application program-
ming interfaces (APIs). On this basis, we have introduced a multi-step model-
driven approach to generate APIs from OWL-based ontologies. The approach
allows for user-driven customizations to reflect the needs in a specific applica-
tion context. This distinguishes our approach from other approaches performing
a naive one-to-one mapping of the ontology concepts and properties to the API
classes and fields, respectively. With our approach, we alleviate the developers
from the tedious and time-consuming API development task such that they can
concentrate on developing the application’s functionalities. The declarative na-
ture of our approach eases reuseability and maintainability of the generated API.
In the case of a change of the ontology or the API, most of the time only the
declarative representation has to be adapted and a new API could be generated.
In our case studies, we applied our approach a wide range of ontologies covering
differences in characteristics in terms of complexity, level of abstraction, degree
of formalization, provenance, and domain-specificity. For our future work, we
plan to integrate the support for different method behaviors (see R5) and we
want to cope with the dynamic extensibility of ontologies. The support of the dy-
namic extensibility of ontologies strongly depends on the persistence layer used,
whereas different method behaviors might need stronger support of reasoning.
Another idea is to use the declarative representation in combination with the
ontology to prove consistency of the data representation and manipulation in
the API regarding the ontology.

Acknowledgements This research has been co-funded by the EU in FP7 in the
SocialSensor project (287975).

22 http://semanticweb.org/wiki/Tripresso last visit dec 5, 2011
2 nttp://www.omg.org/ last visit dec 5, 2011

References

10.

11.

12.

13.

14.

15.

16.

17.

. Martin Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley

Longman, Amsterdam, 2002.

Mark L. Fussell, editor. Foundations of Object Relational Mapping. http://wuw.
database-books.us/databasesystems_0003.php, 2007.

Aldo Gangemi and Peter Mika. Understanding the semantic web through descrip-
tions and situations. volume 2888 of Lecture Notes in Computer Science, pages
689-706. Springer, 2003.

L. Hart and P. Emery. OWL Full and UML 2.0 Compared. http://uk.builder.
com/whitepapers/0and39026692and60093347p-39001028qand00.htm, 2004.
Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. A classi-
fication of object-relational impedance mismatch. In Qiming Chen, Alfredo Cuz-
zocrea, Takahiro Hara, Ela Hunt, and Manuela Popescu, editors, DBKDA, pages
36-43. IEEE Computer Society, 2009.

Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Padget.
Automatic Mapping of OWL Ontologies into Java. In SEKE, 2004.

OMG. Ontology Definition Metamodel. Object Modeling Group, May 2009. http:
//www.omg.org/spec/0DM/1.0/PDF.

Eyal Oren, Renaud Delbru, Sebastian Gerke, Armin Haller, and Stefan Decker.
Activerdf: object-oriented semantic web programming. In WWW. ACM, 2007.
Fernando Silva Parreiras, Carsten Saathoff, Tobias Walter, Thomas Franz, and
Steffen Staab. ‘a gogo: Automatic Generation of Ontology APIs. In IEEE Int.
Conference on Semantic Computing. IEEE Press, 2009.

Fernando Silva Parreiras, Steffen Staab, and Andreas Winter. Improving design
patterns by description logics: A use case with abstract factory and strategy. In
Thomas Khne, Wolfgang Reisig, and Friedrich Steimann, editors, Modellierung,
volume 127 of LNI, pages 89-104. GI, 2008.

Tirdad Rahmani, Daniel Oberle, and Marco Dahms. An adjustable transformation
from owl to ecore. In Dorina C. Petriu, Nicolas Rouquette, and ystein Haugen,
editors, MoDELS (2), volume 6395 of Lecture Notes in Computer Science, pages
243-257. Springer, 2010.

Carsten Saathoff, Stefan Scheglmann, and Simon Schenk. Winter : Mapping RDF
to POJOs revisited. In Poster and Demo Session, ESWC 2009, Heraklion, Greece,
2009.

Carsten Saathoff and Ansgar Scherp. Unlocking the Semantics of Multimedia
Presentations in the Web with the Multimedia Metadata Ontology. In WWW.
ACM, 2010.

Ansgar Scherp, Thomas Franz, Carsten Saathoff, and Steffen Staab. F-a model
of events based on the foundational ontology DOLCE~+DnS Ultralight. In K-CAP
09, New York, NY, USA, 2009. ACM.

Ambler Scott W. Crossing the object-data divide. http://drdobbs.com/
architecture-and-design/184414587, March 2000.

Ambler Scott W. The object-relational impedance mismatch. http://wuw.
agiledata.org/essays/impedanceMismatch.html, January 2010.

R. Wirfs-Brock and B. Wilkerson. Object-Oriented Design: A Responsibility
Driven Approach. SIGPLAN Notices. ACM Press, October 1989.

This article was processed using the IXTEX macro package with LLNCS style

